Explaining regional wage disparities with machine learning:

A SHAP-based interpretation approach
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Abstract. The aim of the study is to provide an explanation for the factors that most
influence the differences in wage levels between Polish powiats (equivalent to
counties). This study investigates regional wage disparities in Poland by applying
machine learning models enhanced by Explanatory Model Analysis techniques. Using
powiat-level data from the Local Data Bank (Pol. Bank Danych Lokalnych — BDL) for
2010 and 2023, a neural network framework was developed to predict wage levels
based on economic, demographic, infrastructural and environmental variables. To
interpret the model, we employed the Variable Importance over Permutation (VIP) and
SHapley Additive exPlanations (SHAP) approaches, which provide insights into both
the global feature importance and the local contributions of individual variables. The
results indicate that the share of the productive population, unemployment rates and
social vulnerability remain key determinants of wage differences, although their
relative influence shifts significantly over time. The SHAP analysis demonstrates how
regional contexts such as Jelenia Gora and Wroctaw powiats exhibit distinct factor
dynamics, with demographic and infrastructural variables playing varying roles across
the studied years. The findings highlight the potential of combining machine learning

with explainability methods to uncover complex, nonlinear determinants of wages,
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offering a more transparent analytical basis for understanding evolving regional
disparities.

Keywords: deep learning, machine learning, explanatory model analysis, wage
disparities
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1. Introduction

Regional wage disparities remain a central topic in labor economics, often
explained by the differences in human capital endowments, sectoral structures,
and spatial inequalities (Combes et al., 2008; Moretti, 2011). Traditional
econometric models have been widely used to quantify these disparities, yet
they frequently rely on restrictive assumptions that may not capture complex,
nonlinear interactions between the explanatory factors. Recent advances in
machine learning provide a powerful alternative by enabling predictive
modeling that accommodates high-dimensional and interdependent features
without imposing strong functional form restrictions (Mullainathan & Spiess,
2017). However, the opacity of machine learning methods has raised concerns
about interpretability, especially in policy-relevant domains such as labor
markets, where transparent explanations are crucial.

To address this challenge, methods of Explainable Al (XAI) like SHapley
Additive exPlanations (SHAP) have emerged as a robust framework for
interpreting complex machine learning models by attributing feature
importance based on the principles of the cooperative game theory (Lundberg
& Lee, 2017; Masis, 2023; Molnar, 2020). Applying SHAP to wage prediction
models allows for a granular understanding of how regional characteristics
such as industrial composition, education levels, or urbanization contribute to
the observed wage gaps. This approach bridges predictive performance with

interpretability, enabling researchers and policymakers to identify the factors



that matter most and see how their effects vary across regions. By combining
Machine Learning with a SHAP-based interpretation, the analysis of regional
wage disparities can advance beyond aggregate statistical associations toward

more actionable, fine-grained insights.

2. Analysis of an explanatory model for studies on wage

differences

2.1. Analysis of wage differences: A literature review

Recent literature offers numerous analyses of spatial wage differentials across
various territorial levels, including Polish powiats and voivodships, and
Ukrainian oblasts (Adamczyk et al., 2009; Bolinska & Gomoika, 2018; Dykas
et al., 2020; Dykas & Misiak, 2013; Kapela & Kwiatkowski, 2023; Przekota,
2016). Theoretical frameworks typically rely on efficiency wage models.
Empirical studies use such indicators as wages, labor productivity, and
unemployment rates to estimate wage determinants via regression analysis.
Beyond basic metrics, newer models such as those by Kapela and Kwiatkowski
(2023) incorporate variables like higher education rates, technological
innovation, and patent activity, while also addressing the effects of the 2020
pandemic. The applied methods include least squares, the generalized method
of moments, clustering methods, and fixed effects models, which enhance the
accuracy of the results. Findings show that factors like proximity to large cities,
labour productivity, and human capital play crucial roles in wage disparities,
while results regarding capital expenditures and industry output remain
ambiguous (Adamczyk et al., 2009; Przekota, 2016).

Wage elasticity relative to unemployment remains a central theme. Many
studies confirm that a negative relationship between the two exists, as seen in



an earlier work by Phillips (1958) and later by Kaliski (1964), Blanchflower
and Oswald (1990), though exceptions occur, such as in South Africa (Kingdon
& Knight, 2006) and in some Polish powiat-level (equivalent to county-level)
fixed-effects models (Dykas & Misiak, 2013). Modern applications of the
Phillips curve continue to show relevance in different national contexts
(Bartosik & Mycielski, 2015; Machuca & Cota, 2017). Other important aspects
include the growing role of education, innovation, and demographic shifts in
explaining wage variation (Combes et al., 2008; Kapela & Kwiatkowski,
2023). Despite the robust research at higher administrative levels, recent
powiat-level studies are scarce, with the latest comprehensive analyses dating
back to 2014 (Dykas & Misiak, 2013). Consequently, a renewed need emerged
to reassess spatial wage dynamics at the powiat level, particularly in light of
the post-pandemic developments and ongoing socio-economic changes (c.f.
Lustyk et al., 2024).

2.2. Methods of explanatory model analysis

To address the challenges described in the previous section, newly arisen
methods of Explanatory Model Analysis/Explainable Al (see Biecek &
Burzykowski, 2021; Masis, 2023; Molnar, 2020), particularly through
Variable Importance over Permutation (VIP) and SHAP values, offer
significant advantages in analyzing economic phenomena.

VIP enables researchers to assess the relative impact of each predictor by
measuring the change in model performance after randomly permuting
individual variables. This model-agnostic method provides an intuitive ranking
of features, highlighting the most influential economic indicators driving

predictive accuracy. It supports a transparent, reproducible evaluation of



variable relevance, which is essential for policy analysis and decision-making
in complex economic systems.

SHAP values further enhance the explanatory power by attributing
prediction contributions to individual features in a theoretically grounded
manner based on the cooperative game theory. Unlike aggregate importance
scores, SHAP delivers local explanations for each prediction, allowing
analysts to understand heterogeneity across economic agents or regions. This
granularity is particularly valuable for exploring non-linear interactions and
dependencies commonly present in econometric models. Together, VIP and
SHAP form a robust framework for interpreting black-box machine learning
models, facilitating deeper insights into causal mechanisms and improving the
credibility of data-driven economic policy recommendations.

Other methods that make explaining black box models possible are partial
dependence plots (PDP), which show the marginal effect that one or two
variables (features) have on the predicted outcome (Friedman, 2001;
Greenwell et al., 2018). PDPs capture only the main effect of the feature and
ignore the possible interactions, so it should be used with care.

Accumulated local effects (ALE) plots describe how variables influence the
prediction. Moreover, ALE plots are faster than PDPs (Apley & Zhu, 2020).
In the ALEs, however, an interpretation of the effect across intervals is not
permissible if the features are strongly correlated. ALE effects may differ from
coefficients specified in linear regression models when variables interact and
are correlated. What is more, ALE plots are not accompanied by Individual
Conditional Explanation (ICE) curves and can have many small ups and
downs. In this case, when we reduce the number of variables, we not only make

the estimates more stable but also smooth out the complexity of the model.



A feature interaction model based on Friedman’s H statistic (Friedman &
Popescu, 2008) and variable interaction networks (Hooker, 2004) allow
variable interactions to be taken into account in the predictions.

Another way to interpret variable importance is through functional
decomposition. It can be done by: functional Analysis of Variance (ANOVA)
(Hooker, 2004), generalized functional ANOVA for dependent variables
(features) (Hooker, 2007), generalized additive regression modes, or ALE
plots.

The permutation feature importance algorithm based on Fisher et al. (2019)
measures the increase in the prediction error of the model after the variable’s
values are permuted, which breaks the relationship between the variable and
the known (true) outcome.

The global surrogate model is another interpretable model that is trained to
approximate the prediction of a black box model. The surrogate model uses a
much simpler model instead of a complex one (Molnar, 2020).

The local interpretable model-agnostic explanations (LIME) is a technique
that approximates any black box machine learning model with a local,
interpretable model to explain each individual prediction that is described in
the paper by Ribeiro et al. (2016). The main idea is that we perturb (change)
the original data points, feed them into the black box model, and then observe
the corresponding outcomes. Then the method weighs those new data points
as a function of their proximity to the original point. Ultimately, using those
sample weights, LIME fits a surrogate model, such as linear regression, on the
dataset with the variations. Each original data point can then be explained with

the newly trained explanation model.

2.3. VIP and SHAP methods for model explanation



Permutation-based methods like VIP, based on the idea introduced by Breiman
(2001), provide a model-agnostic approach to estimating variable importance.
This is done by assessing the impact of controlled perturbations in the input
data on the predictive performance. Instead of relying on the internal structure
of a model, this technique treats the model as a black box and evaluates how
the quality of a prediction changes when the values of a given variable are
deliberately disrupted. If the variable contributes substantially to the model’s
predictive mechanism, permuting its values should lead to a notable decline in
performance. In contrast, if the variable has little or no influence, prediction
quality should remain to a large extent unaffected.

The change in performance — measured through metrics such as mean
squared error, accuracy, or alternative loss functions — serves as an inverse
proxy for variable importance. A larger degradation in predictive quality
implies a higher significance of the variable in the decision-making process. In
practice, this procedure is implemented by randomly permuting the values of
a selected feature across observations in the dataset and re-evaluating the
model’s output. Repeating this process for each variable provides a systematic
and interpretable measure of feature importance that is independent of the
model specification.

This process involves what follows.

Let:

X — a dataset with m explanatory variables and n instances (objects),
Y — column vector of the observed values of the dependent variable,
Y — column vector of the predicted values of the dependent variable,
P(Y,X,Y) — performance metrics (loss function) for the model.

The procedure then involves the following steps:

1. Training the model;

2. Computing p, = P°(Y,X,Y), i.e. the initial value of the loss function;



3. Shuffling (permuting) column vector X, for given 1 < k < m. Matrix X
after permutation becomes X *%);

4. Computing model predictions Y** for X *¥;

5. Computing p,, = P( Y, X"k, Y);

6. Estimating the importance for variable k in the process of prediction

Pk form).
Po

through vip, = p.x — po (alternatively used in the vip, =

The Shapley values, another technique of Explanatory Model Analysis,
originating from the cooperative game theory, provide a rigorous framework
for quantifying the joint contribution of explanatory variables to model
predictions. In Shapley’s (1953) original formulation, the method determined
each player’s marginal contribution to the overall payoff obtained by a
coalition. Transposed into model interpretation, the ‘players’ are the variables,
and the ‘payoff’ corresponds to the model’s prediction. Thus, Shapley values
measure how the estimated outcome changes when a specific variable is added
to the different subsets of predictors involved in generating the prediction.

The final attribution is obtained as a weighted average of these marginal
contributions across all possible subsets. The weighting scheme depends on
the size of the subsets: variables added to very small or nearly complete subsets
receive higher weights, whereas those added to medium-sized subsets are
assigned lower weights. This ensures fairness in attributing contributions
across all possible coalitions of variables. The resulting SHAP provides a
consistent and theoretically grounded measure of variable importance at both
the global (model-wide) and local (instance-specific) levels.

The algorithm for finding the SHAP values for a certain object explained
and a certain variable may be stated as follows:

Let:

X — a dataset with m explanatory variables and n instances (objects);



Y — column vector of the observed values of the dependent variable;
Y — column vector of the predicted values of the dependent variable;
[ — object (instance) index for which the analysis is conducted,;
k — feature (variable) index for which the analysis is conducted.
The procedure then involves the following steps:
1. Training the model;

s Y

2. Calculating ¥, = ===, i.e. the average prediction value over the dataset

(and initial explanation estimation);
3. Let:
V_i =1{1,2,..,m}\{k} Q)
(The set of all variable indices with k excluded);
4. Foreachsin0,1,...,m-1;

5. For all subsets S of V_j, of size s, calculating:

—  (Y)*S average prediction for the dataset for which variables® X;:i € S

values in the whole dataset are set to the values of object X;;

—  (Y)*SY be the average prediction for the dataset for which variables’
X;:i € S and variable’s X, values in the whole dataset are set to the
values of object X;;

and the Shapley value:

SHAPs = s!-(mr:ls—l)! (?l*su{k} _ ?l* ); (2)

6. Summing all the SHAPs values.

The SHAP method was originally introduced by Strumbelj and Kononenko
(2010, 2014) and later popularized by Lundberg and Lee (2017). Its
widespread application stems from a solid theoretical foundation and the

reliability of its explanatory power.



3. Factors determining wage disparities. Research based
on data from the Local Data Bank for 2010 and 2023

The analysis has been conducted on data describing the average
compensation level in Polish powiats in the years 2010 and 2023. The data
were acquired directly from the Local Data Bank (Pol. Bank Danych
Lokalnych — BDL), which is Statistics Poland’s official repository, through
webservices and contained variables which describe economic (labor market),
sociological, demographical, infrastructural and environmental phenomena.

The description of dependent and exogenous variables along with BDL

identifiers is presented in the Table.

Table. Description of variables used in the research

Variable Internal Name Type of Description (English)
ID variable
64428 compensation_level | Dependent Average gross monthly
variable wages in PLN
(economic)

60530 regon_entities_ratio | Labor market Business entities with
registered REGON per
10,000 population

60270 unemployment_ratio | Labor market Registered
unemployment rate
(overall)

458700 social_care_ratio Sociological Beneficiaries of social
assistance by place of
residence as the
percentage of the total
population

60566 productive_populati | Demographical | The percentage share

on_ratio of the working-age
population in the total
population

450551 birthrate Demographical Natural increase (births
minus deaths) per 1,000
population

450543 marriages_ratio Demographical Marriages per 1,000
population

60300 hotels_beds_ratio Touristic Bed places per 1,000
population




395404 routes_ratio Infrastructural Gmina (Polish
equivalent to
municipality) and powiat
hard surface roads in
km per 10,000
population

1646059 forests_ratio Environmental Municipal forest area in
m2 per capita

Source: Local Data Bank (https://bdl.stat.gov.pl).

To find the most influenced factors for wages level modelling, we have built
the eXtreme Gradient Boosting (Chen & Guestrin, 2016) model based on 319
objects describing powiats. The distinct models have been built for both
studied years.

The python code implementing this procedure is included in Appendix 1.
The full text results are presented in Appendix 2. The partial dependency plots
presented in Figures 1 and 2 demonstrate that both models’ convergence is

stable.

Figure 1. Partial dependency plots for explanatory variables for wage levels in
powiats in the 2010 model
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Source: authors’ calculations (code presented in Appendix 1).

Figure 2. Partial dependency plots for explanatory variables for wage levels in powiats
in the 2023 model
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Partial dependency plots for compensation level model for 2023
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Source: authors’ calculations (code presented in Appendix 1).

The model shows solid learning on training data (R? = 0.626). The test
performance is positive and reasonable (R2 = 0.290), indicating it captures
useful predictive relationships. The gap between 0.626 and 0.290 suggests
some degree of overfitting, but not severe, which is typical and acceptable for
many socioeconomic datasets. The model generalizes moderately well and is
reliable enough to proceed with interpretation (VIP, SHAP).

The VIP method is used to evaluate the influence of explanatory variables
on the explained phenomena (wage level in powiats). The results for the

models for 2010 and 2023 are presented in Figures 3 and 4.

Figure 3. Variable importance plot for exogenous variables for wage levels in powiats
in 2010
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XGB_2010

social_care_ratio +68.654

routes_ratio +62.227
productive_population_ratio +46.592
unemployment_ratio +36.347
regon_entities_ratio
forests_ratio
marriages_ratio
birthrate

hotels_beds_ratio

260 280 300 320

drop-out loss
Source: authors’ calculations (code presented in Appendix 2).

Figure 4. Variable importance plot for exogenous variables for wage levels in powiats
in 2023
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Source: authors’ calculations (code presented in Appendix 1).

The VIP results for 2010 indicate that the most influential variable is the
social_care_ratio, with the highest dropout loss equal to 320.23. Thich means
that removing this variable causes the strongest deterioration in model
performance, suggesting that the social-assistance burden was a key structural
determinant of compensation levels in 2010. The next highly influential
variables are the routes_ratio (313.80) and productive_population_ratio



(298.16), both of which significantly worsen prediction when excluded,
showing that transportation accessibility and the working-age population share
are critical factors.

Further in the ranking, variables such as the unemployment_ratio (287.92),
regon_entities_ratio (261.50), and forests_ratio (260.09) still contribute
substantially to model accuracy, but their influence is more moderate. Their
dropout losses imply that labor-market structure, business density, and
environmental context affect compensation prediction, but to a lesser degree
than factors related to social services and transport. These mid-ranked
variables form a secondary explanatory layer that stabilizes the model.

At the lower end of the importance distribution, the predictors with the
smallest dropout losses, namely the marriages_ratio (259.70), birthrate
(254.86), and the hotels_beds_ratio (254.13) exerted the least influence in
2010. Removing them increases error only slightly, suggesting they contain
comparatively limited independent information for determining compensation
differences. In this year, demographic and tourism indicators appear marginal
relative to the socioeconomic structure and accessibility.

The VIP analysis of the 2023 wage prediction model for Polish powiats
highlights the relative strength of diverse structural, demographic, and
environmental determinants.

In 2023, the variable importance structure shifts noticeably, with the
social_care_ratio again emerging as the most influential predictor. This time,
it shows an even higher dropout loss of 676.01, making it the dominant factor
in the model. The next influential variables are the regon_entities_ratio
(654.33) and routes_ratio (642.31), both showing large performance drops
when removed. This highlights the growing importance of business density

and transportation infrastructure for explaining compensation levels in 2023.



The middle tier of variables, including the hotels_beds_ratio (591.84),
forests_ratio (587.60), and productive_population_ratio (580.12) also carry
substantial explanatory weight. Their dropout losses show that tourism
capacity, environmental features, and demographic composition meaningfully
support model predictions. Compared to 2010, these secondary predictors
become more informative, suggesting a more complex structure of the
determinants.

The least influential predictors are the unemployment ratio (579.92),
marriages_ratio (569.89), and birthrate (563.92), whose dropout losses are
closer to the full model but still in the lower range of importance. Although
still impactful, the demographic and labor-market indicators exert smaller
marginal effects compared with structural and institutional features. The 2023
importance pattern therefore portrays a landscape where social-service load,
enterprise density, and infrastructure dominate compensation prediction, while
demographic variables play a supportive yet reduced role.

The explanatory model analysis method allows a deeper insight into factors
determining the analyzed phenomenon (compensation level). The analysis
covers not only general model explanation but also most influential factors in
individual cases.

To better understand the influence of the given phenomena on overall
compensation differences at local level, a SHAP analysis is conducted. The
SHAP values for the 2010 and 2023 models for the Jelenia Gora powiat are

presented in Figures 5 and 6.

Figure 5. SHAP plot for exogenous variables for wage levels in the Jelenia Goéra
powiat in 2010
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Figure 6. SHAP plot for exogenous variables for the wage levels in the Jelenia Géra
powiat in 2023
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Source: authors’ calculations (code presented in Appendix 2).

For the Jelenia Gora powiat, in 2010, the strongest SHAP contributor was
the routes_ratio, with a positive effect of 107.27 at a value of 24.40. This
highlights the powiat’s relative transport accessibility as a major factor

supporting its compensation prediction. The next significant variables are the



unemployment_ratio (+26.64 at 10.90) and social_care_ratio (+19.70 at 5.90),
indicating that despite relatively high unemployment and social-care
indicators, these conditions still contribute positively within the model
structure.

Negative contributions also proved to play an essential role. The
productive_population_ratio (—14.27 at 64.70) pulls the prediction downward,
suggesting demographic or economic strain associated with the powiat’s
working-age population share. The forests_ratio (—2.41), hotels_beds_ratio (—
1.59), and marriages_ratio (—0.34) also reduce the prediction slightly,
implying that environmental and tourism indicators contribute less positively
for Jelenia Gdra compared to other powiats.

A few variables exert small positive influences. The regon_entities_ratio
(+9.17 at 1,499) and birthrate (+4.71 at —3.83) add a marginal upward pressure
on salaries. The overall SHAP structure for 2010 reflects a mix of strong
transport infrastructure effects and modest socioeconomic constraints, with
demographic features moderating the powiat’s predicted compensation level.

For Jelenia Géra in 2023, the regon_entities_ratio became the strongest
positive contributor, with a SHAP value of +168.11 at 1,815 entities. This
signals the increasing importance of local business density for salary levels.
The productive_population_ratio (+86.10 at 54.90) and routes_ratio (+73.08
at 27.90) also strongly elevate the prediction, with transportation accessibility
remaining a key structural advantage.

Additional positive contributions derive from the unemployment ratio
(+40.13 at 3.90) and hotels_beds_ratio (+9.11 at 35.70), indicating that
tourism infrastructure played a more supportive role in 2023 than in 2010.
Meanwhile, the social_care_ratio shows a negative impact (—17.93), which

suggests an increasing sensitivity of the model to social-assistance burdens.



The forests_ratio also contributes negatively (-7.52), moderating the positive
effects of other variables.

Smaller contributions come from birthrate (+5.07) and the marriages_ratio
(+0.24), which have a limited influence. Overall, the SHAP profile for 2023
indicates that Jelenia Gora’s salary structure is shaped by a combination of
economic density, demographic composition, and improved labor-market
indicators, with structural accessibility continuing to reinforce compensation
predictions.

For Jelenia Géra, the SHAP comparison between 2010 and 2023 shows a
clear shift in the structure of factors influencing compensation levels. In 2010,
the main positive driver was the routes_ratio (+107.27 at 24.40), supported by
the unemployment_ratio (+26.64) and social_care_ratio (+19.70), while the
the productive_population_ratio (—14.27) exerted a negative influence and the
remaining variables had only small effects. In 2023, however, the leading
factor becomes the regon_entities_ratio (+168.11 at 1815), accompanied by
strong positive contributions from the productive_population_ratio (+86.10)
and routes_ratio (+73.08). This indicates a transition from an ‘infrastructure-
driven’ model to a more ‘economic-demographic’ one. The role of the
social_care_ratio also changes, from a small positive effect in 2010 (+19.70)
to a clearly negative effect in 2023 (-17.93), suggesting the model became
more sensitive to social-assistance burdens.

Jelenia Gora is a representative of medium-sized powiats. To broaden the
analysis, the SHAP values have been estimated for a representative of larger

powiats, like the Wroctaw powiat with results presented in Figures 7 and 8.

Figure 7. SHAP plot for exogenous variables for wage levels in the Wroctaw powiat
in 2010
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Figure 8. SHAP plot for exogenous variables for the wage levels in the Wroctaw
powiat in 2023
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In the Wroctaw powiat (2010), the SHAP analysis highlights the
social_care_ratio as the dominant positive driver, contributing 300.38 units to
the prediction at a value of 2.50. This indicates that Wroctaw’s low social-care
burden is interpreted by the model as strongly favorable for compensation
levels. Similarly, the routes_ratio (SHAP = 213.06, value = 12.20) exerts a



substantial positive impact, reflecting Wroctaw’s well-developed transport
networks.

Another strong contributor is the unemployment_ratio, adding 124.48 units
at a relatively low level of 5.50, suggesting that lower unemployment aligns
with higher predicted salaries. The marriages_ratio also shows a smaller but
positive impact (+14.44), hinting at demographic vitality. In contrast, the
regon_entities_ratio (SHAP = -10.31 at 1,608 entities) slightly reduces the
prediction, which may reflect saturation or diminishing marginal returns in
areas with very high business density.

Most remaining variables contribute modestly. Birthrate (+5.58), the
hotels_beds_ratio (+2.79), and forests_ratio (+0.74) collectively reinforce the
positive prediction but with relatively small effects. Their limited magnitude
suggests that Wroctaw’s compensation structure in 2010 was driven far more
by social infrastructure, transportation connectivity, and labor-market
conditions than by tourism capacity or environmental features.

In 2023, the Wroctaw powiat showed significantly larger SHAP magnitudes
than in 2010. The strongest contributor was still the social_care_ratio, this
time with an even more extreme value of +577.18 at a feature value of 1.10,
reinforcing the model’s interpretation of a low social-care burden as a strong
positive salary determinant. The routes_ratio follows with 458.16 at 14.20,
highlighting substantial benefits from transport connectivity.

A major upward contribution also comes from the regon_entities_ratio,
adding 440.86 at a high value of 2,205, implying that in 2023, business density
exerted a far stronger positive effect than in 2010. The unemployment_ratio
(+112.97) and marriages_ratio (+104.92) further elevated the compensation
prediction, linking favorable labor-market and demographic conditions to

higher wages.



Lesser yet notable effects included the hotels_beds_ratio (+72.29), birthrate
(+12.15), and a small negative influence from the forests_ratio (—7.05). The
productive_population_ratio contributed only +1.92, indicating minimal
effect. Overall, the SHAP profile revealed that in 2023, Wroctaw’s
compensation structure was strongly shaped by socioeconomic advantage,
business density, and infrastructure, with demographic indicators reinforcing
but not dominating the signal.

For Wroctaw, the comparison of 2010 and 2023 reveals an increase in the
strength of the main predictive factors and a shift in the importance of several
of them. In 2010, the model was dominated by the social_care_ratio (+300.38
at 2.50) and routes_ratio (+213.06), with a notable but smaller effect from the
unemployment_ratio (+124.48), while the regon_entities_ratio was even
slightly negative (—10.31). In 2023, all major 2010 factors remained influential:
the social_care_ratio (+577.18), routes_ratio (+458.16), and especially the
regon_entities_ratio (+440.86 at 2205), indicating that business density
became a key advantage for the city. At the same time, the marriages_ratio
(+104.92) and hotels_beds_ratio (+72.29) gained significantly more
importance than in 2010, while the effect of the productive_population_ratio
decreased and became nearly neutral (+1.92). This shows that in 2023,
compensation levels in Wroctaw were primarily shaped by a combination of

institutional-infrastructural strengths and high economic activity.

4. Conclusions

The results demonstrate that machine learning, when combined with
interpretability methods, can capture the complexity of regional wage
disparities beyond the scope of traditional econometric approaches. While

labor market and demographic indicators consistently emerge as the strongest



determinants, their relative importance evolves in response to broader socio-
economic changes. The observed shifts between 2010 and 2023 underline the
dynamic nature of regional wages formation, where structural conditions such
as productive population ratios and enterprise density interact with local
demographic and infrastructural contexts in non-linear ways.

Importantly, a SHAP-based analysis allows for a nuanced understanding of
these dynamics by revealing how the same variable can contribute differently
across powiats and time periods. This local interpretability enhances the
practical value of predictive modeling for policymakers, offering insights that
extend beyond aggregate associations. The findings suggest that data-driven
approaches, when complemented with robust explanatory tools, provide not
only accurate predictions but also meaningful guidance for regional

development strategies aimed at mitigating wage inequalities.
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Appendix 1.

The code used in the research study is presented below. The data were acquired
directly from BDL through the webservices. To repeat the analysis for years
other than 2010 and 2023 (assuming that data are available in the repository
for the chosen years), the only line that requires change is ‘for YEAR in
[2010,2023]:".

import requests

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import shap


https://doi.org/10.1111/j.1468-0335.1958.tb00003.x
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import dalex as dx

from sklearn.model selection import train test split,
RepeatedKFold, cross validate

from sklearn.preprocessing import StandardScaler

# from sklearn.neural network import MLPRegressor

from sklearn.inspection import PartialDependenceDisplay
from sklearn.metrics import r2 score, mean squared error
from xgboost import XGBRegressor

base url = "https://bdl.stat.gov.pl/api/vl/data/by-
variable/"
params = {

'format': 'Jsonapi',

'unit-level': 5,

'page-size': 100,

}

def get data by variable(variable id, variable name,
year) :

ids = []

values = []

for page in range (4):

params [ 'page'] = page
params|['year'] = year
response = requests.get (f"{base url}{variable id}",

params=params)
data = response.json ()

for item in data['data'l]:

attributes = item['attributes']
id = item['id']
val data = attributes['values']

if val data:

val = val datal[0]['val']
ids.append (id )
values.append(val)

return pd.DataFrame ({variable name: values}, index=ids)

for YEAR in [2010, 2023]:

df vars = {

64428: 'compensation level',
60530: 'regon entities ratio',



458700: 'social care ratio’,

395404: 'routes ratio',

60270: 'unemployment ratio',

60566: 'productive population ratio',
450551: "birthrate",

1646059: "forests ratio",

60300: "hotels beds ratio",

450543: "marriages_ ratio"

}

df = None
for key, val in df vars.items():

df current = get data by variable(key, val, YEAR)

if df is None:

df = df current

else:

df = df.join(df current)

# Basic dataset summary

X = df.drop(columns=['compensation level'])

y = df['compensation level']
n obs, n features = X.shape
print (f"\n=== YEAR {YEAR} ===")

print (f"Number of observations: {n obs}")
print (f"Number of predictors: {n features}")
print (f"Observation-to-predictor ratio:

n features:.2f}")

{n obs /

# Train-test split BEFORE scaling to avoid leakage
X train, X test, y train, y test = train test split(

X, y, test size=0.05, random state=42
)

xgb = XGBRegressor (

n _estimators=200,

learning rate=0.01,

max depth=3,

subsample=0.8,

colsample bytree=0.8,

reg lambda=1.0,

random state=42,
objective="reg:squarederror"

)

cv = RepeatedKFold(n splits=5,

random state=42)
cv_results = cross validate(

n_repeats=5,



xgb,

X train,

y train,

cv=cv,

scoring=['r2', 'neg root mean squared error'],
return train score=True

)

print (£"CV mean test R2:
{np.mean(cv_results['test r2']):.3f}")
print (f"CV mean test RMSE : {-

np.mean(cv_results['test neg root mean squared error']):
L3E1M)

xgb.fit (X train, y train)
y pred train = xgb.predict (X train)
y pred test = xgb.predict (X test)

train r2 = r2 score(y train, y pred train)
test r2 = r2 score(y test, y pred test)
train rmse = mean squared error(y train,

y _pred train)**.5
test rmse = mean squared error(y test, y pred test)**.5

print (f"Train R2: {train r2:.3f}, RMSE :
{train rmse:.3f}")

print (f"Test R?: {test r2:.3f}, RMSE: {test rmse:.3f}")

model explainer = dx.Explainer (xgb, X, Yy
label=f"XGB {YEAR}")
vi = model explainer.model parts (N=10000,

random state=42)

print (vi.result)

fig vi = vi.plot(show=False, title=f"XGB VIP explainer
for compensation level in year {YEAR}")

fig vi.write image (f"vip plot {YEAR}.png")

# SHAP analysis

explainer = shap.Explainer (xgb.predict, X,
feature names=X.columns)
shap values = explainer (X)

# Jelenia Goéra

index jg = df.index.get 1loc("030210161000")
shap df jg = pd.DataFrame ({

'Feature': X.columns,

'SHAP Value': shap values[index jg].values,
'Feature Value': shap values[index jg].data

)



print ("SHAP values for county Jelenia Goéra
(030210161000) = ™)

print (shap df jg.sort values(by='SHAP Value', key=abs,
ascending=False) .head (10))

plt.figure(figsize=(18, 6))

plt.suptitle (f"Compensation Level Model SHAP values for
Jelenia Goéra for year {YEAR}")

shap.plots.bar (shap values[index jg], max display=10,
show=False, show data=True)

plt.tight layout (pad=1.0)
plt.savefig (f"Jelenia shap {YEAR}.jpg")

plt.show ()

# Wroctaw

index wr = df.index.get 1loc("030210564000")
shap df wr = pd.DataFrame ({

'Feature': X.columns,
'SHAP Value': shap values[index wr].values,
'Feature Value': shap values[index wr].data

})
print ("SHAP values for county Wroctaw (030210564000):")

print (shap df wr.sort values(by='SHAP Value', key=abs,
ascending=False) .head (10))

plt.figure (figsize=(12, 6))

shap.plots.bar (shap values[index wr], max display=10,
show=False, show data=True)

plt.suptitle (f"Compensation Level Model SHAP values for
Wroctaw for year {YEAR}")

plt.tight layout (pad=1)
plt.savefig(f"Wroclaw shap {YEAR}.Jjpg")

plt.show ()

# PDP plots (using scaled data from final model)
fig, ax = plt.subplots(figsize=(12, 8))
PartialDependenceDisplay.from estimator (

xgb,

Xy

features=list (range (X.shape[1l])),

feature names=X.columns,

ax=ax

)

plt.suptitle (f"Partial dependency plots for compensation
level model for year {YEAR}")

plt.tight layout()
plt.savefig (£"PDP_ {YEAR}.jpg")



plt.show ()

Appendix 2.

The full results obtained after the execution of the code presented in Appendix

1 are as follows:

=== YEAR 2010 ===

Number of observations: 379

Number of predictors: 9
Observation-to-predictor ratio: 42.11

CV mean test R?: 0.299

CV mean test RMSE: 340.347

Train R?: 0.629, RMSE: 254.324

Test R?: 0.369, RMSE: 192.135

Preparation of a new explainer is initiated

-> data : 379 rows 9 cols

-> target variable : Parameter 'y' was a pandas.Series. Converted to
a numpy.ndarray.

-> target variable : 379 values

-> model class : xgboost.sklearn.XGBRegressor (default)

-> label : XGB 2010

-> predict function : <function yhat default at 0x000002C41C6A75B0>
will be used (default)

-> predict function : Accepts pandas.DataFrame and numpy.ndarray.

-> predicted values : min = 2.72e+03, mean = 2.89%9e+03, max = 4.11e+03

-> model type : regression will be used (default)
-> residual function : difference between y and yhat (default)
-> residuals : min = -6.88e+02, mean = 5.32, max = 1.9e+03

-> model info : package xgboost

A new explainer has been created!

variable dropout loss label

0 full model 251.572326 XGB 2010

1 hotels beds ratio 254.133193 XGB 2010

2 birthrate 254.864096 XGB 2010

3 marriages ratio 259.696907 XGB 2010

4 forests_ratio 260.088788 XGB 2010

5 regon entities ratio 261.499846 XGB 2010

6 unemployment ratio 287.919198 XGB 2010

7 productive population ratio 298.164109 XGB 2010
8 routes ratio 313.799260 XGB 2010

9 social care ratio 320.226454 XGB 2010

10 baseline 468.653795 XGB 2010

ExactExplainer explainer: 380it [00:52, 7.25it/s]
SHAP values for county Jelenia Géra (030210161000) :
Feature SHAP Value Feature Value

2 routes ratio 107.268913 24.40

3 unemployment ratio 26.644887 10.90

1 social care ratio 19.697117 5.90



productive population ratio -14.265568 64.70
regon entities ratio 9.167773 1499.00
birthrate 4.711150 -3.83

forests ratio -2.413097 52.90
hotels beds ratio -1.588051 22.24
marriages ratio -0.335435 5.40
SHAP values for county Wrocitaw (030210564000) :
Feature SHAP Value Feature Value
social care ratio 300.382093 2.50

routes ratio 213.063043 12.20

unemployment ratio 124.481779 5.50
productive population ratio -16.713112 65.80
marriages ratio 14.444688 5.60

regon _entities ratio -10.308929 1608.00
birthrate 5.582377 0.25

hotels beds ratio 2.794502 13.95

forests ratio 0.744744 13.80
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=== YEAR 2023 ===

Number of observations: 380

Number of predictors: 9
Observation-to-predictor ratio: 42.22

CV mean test R?: 0.251

CV mean test RMSE: 718.596

Train R2?: 0.564, RMSE: 562.235

Test R2?2: -0.034, RMSE: 527.064

Preparation of a new explainer is initiated

-> data : 380 rows 9 cols

-> target variable : Parameter 'y' was a pandas.Series. Converted to
a numpy.ndarray.

-> target variable : 380 values

-> model class : xgboost.sklearn.XGBRegressor (default)

-> label : XGB 2023

-> predict function : <function yhat default at 0x000002C41C6A75B0>
will be used (default)

-> predict function : Accepts pandas.DataFrame and numpy.ndarray.

-> predicted values : min = 4.5e+03, mean = 6.56e+03, max = 9.46e+03

-> model type : regression will be used (default)
-> residual function : difference between y and yhat (default)
-> residuals : min = -4.5e+03, mean = 2.39, max = 3.35e+03

-> model info : package xgboost

A new explainer has been created!

variable dropout loss label

0 full model 560.529352 XGB 2023

1 birthrate 563.920908 XGB 2023

2 marriages ratio 569.890669 XGB 2023

3 unemployment ratio 579.918983 XGB 2023

4 productive population ratio 580.117875 XGB 2023
5 forests_ratio 587.603146 XGB 2023

6 hotels beds ratio 591.842447 XGB 2023

7 routes ratio 642.313577 XGB_ 2023

8 regon entities ratio 654.331861 XGB 2023

9 social care ratio 676.012299 XGB 2023

10 baseline 935.037314 XGB 2023

ExactExplainer explainer: 381it [00:34, 8.13it/s]



SHAP values for county Jelenia Gdéra (030210161000) :
Feature SHAP Value Feature Value
0 regon entities ratio 168.111842 1815.00
4 productive population ratio 86.101887 54.90
2 routes ratio 73.077743 27.90
3 unemployment ratio 40.129574 3.90

1 social care ratio -17.931182 2.70
7 hotels beds ratio 9.112820 35.70

6 forests ratio -7.528812 59.10
5 birthrate 5.067187 -8.75

8 marriages ratio 0.236881 3.70
SHAP values for county Wrocitaw (030210564000) :
Feature SHAP Value Feature Value
social care ratio 577.179101 1.10

routes ratio 458.159322 14.20

regon _entities ratio 440.862895 2205.00
unemployment ratio 112.970279 1.60
marriages ratio 104.923334 5.80
hotels beds ratio 72.285200 21.63

birthrate 12.149382 -1.77

forests ratio -7.046792 15.20

productive population ratio 1.921097 60.804

productive population ratio 3.846133 2.033800
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