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Abstract. The aim of the study is to provide an explanation for the factors that most 

influence the differences in wage levels between Polish powiats (equivalent to 

counties). This study investigates regional wage disparities in Poland by applying 

machine learning models enhanced by Explanatory Model Analysis techniques. Using 

powiat-level data from the Local Data Bank (Pol. Bank Danych Lokalnych – BDL) for 

2010 and 2023, a neural network framework was developed to predict wage levels 

based on economic, demographic, infrastructural and environmental variables. To 

interpret the model, we employed the Variable Importance over Permutation (VIP) and 

SHapley Additive exPlanations (SHAP) approaches, which provide insights into both 

the global feature importance and the local contributions of individual variables. The 

results indicate that the share of the productive population, unemployment rates and 

social vulnerability remain key determinants of wage differences, although their 

relative influence shifts significantly over time. The SHAP analysis demonstrates how 

regional contexts such as Jelenia Góra and Wrocław powiats exhibit distinct factor 

dynamics, with demographic and infrastructural variables playing varying roles across 

the studied years. The findings highlight the potential of combining machine learning 

with explainability methods to uncover complex, nonlinear determinants of wages, 
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offering a more transparent analytical basis for understanding evolving regional 

disparities. 

Keywords: deep learning, machine learning, explanatory model analysis, wage 

disparities 

JEL: C15, C45, O150 

 

1. Introduction 

 

Regional wage disparities remain a central topic in labor economics, often 

explained by the differences in human capital endowments, sectoral structures, 

and spatial inequalities (Combes et al., 2008; Moretti, 2011). Traditional 

econometric models have been widely used to quantify these disparities, yet 

they frequently rely on restrictive assumptions that may not capture complex, 

nonlinear interactions between the explanatory factors. Recent advances in 

machine learning provide a powerful alternative by enabling predictive 

modeling that accommodates high-dimensional and interdependent features 

without imposing strong functional form restrictions (Mullainathan & Spiess, 

2017). However, the opacity of machine learning methods has raised concerns 

about interpretability, especially in policy-relevant domains such as labor 

markets, where transparent explanations are crucial. 

To address this challenge, methods of Explainable AI (XAI) like SHapley 

Additive exPlanations (SHAP) have emerged as a robust framework for 

interpreting complex machine learning models by attributing feature 

importance based on the principles of the cooperative game theory (Lundberg 

& Lee, 2017; Masís, 2023; Molnar, 2020). Applying SHAP to wage prediction 

models allows for a granular understanding of how regional characteristics 

such as industrial composition, education levels, or urbanization contribute to 

the observed wage gaps. This approach bridges predictive performance with 

interpretability, enabling researchers and policymakers to identify the factors 



 

 

that matter most and see how their effects vary across regions. By combining 

Machine Learning with a SHAP-based interpretation, the analysis of regional 

wage disparities can advance beyond aggregate statistical associations toward 

more actionable, fine-grained insights. 

 

2. Analysis of an explanatory model for studies on wage 

differences  

 

2.1. Analysis of wage differences: A literature review 

 

Recent literature offers numerous analyses of spatial wage differentials across 

various territorial levels, including Polish powiats and voivodships, and 

Ukrainian oblasts (Adamczyk et al., 2009; Bolińska & Gomółka, 2018;  Dykas 

et al., 2020; Dykas & Misiak, 2013; Kapela & Kwiatkowski, 2023; Przekota, 

2016). Theoretical frameworks typically rely on efficiency wage models. 

Empirical studies use such indicators as wages, labor productivity, and 

unemployment rates to estimate wage determinants via regression analysis. 

Beyond basic metrics, newer models such as those by Kapela and Kwiatkowski 

(2023) incorporate variables like higher education rates, technological 

innovation, and patent activity, while also addressing the effects of the 2020 

pandemic. The applied methods include least squares, the generalized method 

of moments, clustering methods, and fixed effects models, which enhance the 

accuracy of the results. Findings show that factors like proximity to large cities, 

labour productivity, and human capital play crucial roles in wage disparities, 

while results regarding capital expenditures and industry output remain 

ambiguous (Adamczyk et al., 2009; Przekota, 2016). 

Wage elasticity relative to unemployment remains a central theme. Many 

studies confirm that a negative relationship between the two exists, as seen in 



 

 

an earlier work by Phillips (1958) and later by Kaliski (1964), Blanchflower 

and Oswald (1990), though exceptions occur, such as in South Africa (Kingdon 

& Knight, 2006) and in some Polish powiat-level (equivalent to county-level) 

fixed-effects models (Dykas & Misiak, 2013). Modern applications of the 

Phillips curve continue to show relevance in different national contexts 

(Bartosik & Mycielski, 2015; Machuca & Cota, 2017). Other important aspects 

include the growing role of education, innovation, and demographic shifts in 

explaining wage variation (Combes et al., 2008; Kapela & Kwiatkowski, 

2023). Despite the robust research at higher administrative levels, recent 

powiat-level studies are scarce, with the latest comprehensive analyses dating 

back to 2014 (Dykas & Misiak, 2013). Consequently, a renewed need emerged 

to reassess spatial wage dynamics at the powiat level, particularly in light of 

the post-pandemic developments and ongoing socio-economic changes (c.f. 

Luśtyk et al., 2024). 

 

2.2. Methods of explanatory model analysis  

 

To address the challenges described in the previous section, newly arisen 

methods of Explanatory Model Analysis/Explainable AI (see Biecek & 

Burzykowski, 2021; Masís, 2023; Molnar, 2020), particularly through 

Variable Importance over Permutation (VIP) and SHAP values, offer 

significant advantages in analyzing economic phenomena. 

VIP enables researchers to assess the relative impact of each predictor by 

measuring the change in model performance after randomly permuting 

individual variables. This model-agnostic method provides an intuitive ranking 

of features, highlighting the most influential economic indicators driving 

predictive accuracy. It supports a transparent, reproducible evaluation of 



 

 

variable relevance, which is essential for policy analysis and decision-making 

in complex economic systems. 

SHAP values further enhance the explanatory power by attributing 

prediction contributions to individual features in a theoretically grounded 

manner based on the cooperative game theory. Unlike aggregate importance 

scores, SHAP delivers local explanations for each prediction, allowing 

analysts to understand heterogeneity across economic agents or regions. This 

granularity is particularly valuable for exploring non-linear interactions and 

dependencies commonly present in econometric models. Together, VIP and 

SHAP form a robust framework for interpreting black-box machine learning 

models, facilitating deeper insights into causal mechanisms and improving the 

credibility of data-driven economic policy recommendations. 

Other methods that make explaining black box models possible are partial 

dependence plots (PDP), which show the marginal effect that one or two 

variables (features) have on the predicted outcome (Friedman, 2001; 

Greenwell et al., 2018). PDPs capture only the main effect of the feature and 

ignore the possible interactions, so it should be used with care. 

Accumulated local effects (ALE) plots describe how variables influence the 

prediction. Moreover, ALE plots are faster than PDPs (Apley & Zhu, 2020). 

In the ALEs, however, an interpretation of the effect across intervals is not 

permissible if the features are strongly correlated. ALE effects may differ from 

coefficients specified in linear regression models when variables interact and 

are correlated. What is more, ALE plots are not accompanied by Individual 

Conditional Explanation (ICE) curves and can have many small ups and 

downs. In this case, when we reduce the number of variables, we not only make 

the estimates more stable but also smooth out the complexity of the model. 



 

 

A feature interaction model based on Friedman’s H statistic (Friedman & 

Popescu, 2008) and variable interaction networks (Hooker, 2004) allow 

variable interactions to be taken into account in the predictions. 

Another way to interpret variable importance is through functional 

decomposition. It can be done by: functional Analysis of Variance (ANOVA) 

(Hooker, 2004), generalized functional ANOVA for dependent variables 

(features) (Hooker, 2007), generalized additive regression modes, or ALE 

plots. 

The permutation feature importance algorithm based on Fisher et al. (2019) 

measures the increase in the prediction error of the model after the variable’s 

values are permuted, which breaks the relationship between the variable and 

the known (true) outcome. 

The global surrogate model is another interpretable model that is trained to 

approximate the prediction of a black box model. The surrogate model uses a 

much simpler model instead of a complex one (Molnar, 2020). 

The local interpretable model-agnostic explanations (LIME) is a technique 

that approximates any black box machine learning model with a local, 

interpretable model to explain each individual prediction that is described in 

the paper by Ribeiro et al. (2016). The main idea is that we perturb (change) 

the original data points, feed them into the black box model, and then observe 

the corresponding outcomes. Then the method weighs those new data points 

as a function of their proximity to the original point. Ultimately, using those 

sample weights, LIME fits a surrogate model, such as linear regression, on the 

dataset with the variations. Each original data point can then be explained with 

the newly trained explanation model. 

 

2.3. VIP and SHAP methods for model explanation 

 



 

 

Permutation-based methods like VIP, based on the idea introduced by Breiman 

(2001), provide a model-agnostic approach to estimating variable importance. 

This is done by assessing the impact of controlled perturbations in the input 

data on the predictive performance. Instead of relying on the internal structure 

of a model, this technique treats the model as a black box and evaluates how 

the quality of a prediction changes when the values of a given variable are 

deliberately disrupted. If the variable contributes substantially to the model’s 

predictive mechanism, permuting its values should lead to a notable decline in 

performance. In contrast, if the variable has little or no influence, prediction 

quality should remain to a large extent unaffected. 

The change in performance – measured through metrics such as mean 

squared error, accuracy, or alternative loss functions – serves as an inverse 

proxy for variable importance. A larger degradation in predictive quality 

implies a higher significance of the variable in the decision-making process. In 

practice, this procedure is implemented by randomly permuting the values of 

a selected feature across observations in the dataset and re-evaluating the 

model’s output. Repeating this process for each variable provides a systematic 

and interpretable measure of feature importance that is independent of the 

model specification. 

This process involves what follows. 

Let: 

𝑋 – a dataset with m explanatory variables and n instances (objects), 

𝑌 – column vector of the observed values of the dependent variable,  

𝑌̂ – column vector of the predicted values of the dependent variable,  

𝑃(𝑌̂, 𝑋, 𝑌) – performance metrics (loss function) for the model. 

The procedure then involves the following steps: 

1. Training the model; 

2. Computing 𝑝0 = 𝑃0(𝑌̂, 𝑋, 𝑌), i.e. the initial value of the loss function; 



 

 

3. Shuffling (permuting) column vector 𝑋𝑘 for given 1 < 𝑘 < 𝑚. Matrix 𝑋 

after permutation becomes 𝑋(∗𝑘); 

4. Computing model predictions 𝑌̂∗𝑘 for 𝑋∗𝑘; 

5. Computing 𝑝∗𝑘 = 𝑃( 𝑌̂∗𝑘, 𝑋∗𝑘, 𝑌); 

6. Estimating the importance for variable 𝑘 in the process of prediction 

through 𝑣𝑖𝑝𝑘 = 𝑝∗𝑘 − 𝑝0 (alternatively used in the 𝑣𝑖𝑝𝑘 =
𝑝∗𝑘

𝑝0
 form). 

 

The Shapley values, another technique of Explanatory Model Analysis, 

originating from the cooperative game theory, provide a rigorous framework 

for quantifying the joint contribution of explanatory variables to model 

predictions. In Shapley’s (1953) original formulation, the method determined 

each player’s marginal contribution to the overall payoff obtained by a 

coalition. Transposed into model interpretation, the ‘players’ are the variables, 

and the ‘payoff’ corresponds to the model’s prediction. Thus, Shapley values 

measure how the estimated outcome changes when a specific variable is added 

to the different subsets of predictors involved in generating the prediction. 

The final attribution is obtained as a weighted average of these marginal 

contributions across all possible subsets. The weighting scheme depends on 

the size of the subsets: variables added to very small or nearly complete subsets 

receive higher weights, whereas those added to medium-sized subsets are 

assigned lower weights. This ensures fairness in attributing contributions 

across all possible coalitions of variables. The resulting SHAP provides a 

consistent and theoretically grounded measure of variable importance at both 

the global (model-wide) and local (instance-specific) levels. 

The algorithm for finding the SHAP values for a certain object explained 

and a certain variable may be stated as follows: 

Let: 

𝑋 – a dataset with 𝑚 explanatory variables and 𝑛 instances (objects); 



 

 

𝑌 – column vector of the observed values of the dependent variable; 

𝑌̂ – column vector of the predicted values of the dependent variable; 

𝑙 – object (instance) index for which the analysis is conducted; 

𝑘 – feature (variable) index for which the analysis is conducted.  

The procedure then involves the following steps: 

1. Training the model; 

2. Calculating 𝑌0̂ =
∑ 𝑌𝑖̂

𝑛
𝑖=1

𝑛
 , i.e. the average prediction value over the dataset 

(and initial explanation estimation); 

3. Let: 

 𝑉−𝑘 = {1,2, … , m}\{k} (1) 

(The set of all variable indices with 𝑘 excluded); 

4. For each s in 0,1,…,m-1; 

5. For all subsets S of 𝑉−𝑘 of size s, calculating: 

– (𝑌𝑙)̂
∗𝑆 average prediction for the dataset for which variables’ 𝑋𝑖: 𝑖 ∈ 𝑆 

values in the whole dataset are set to the values of object 𝑋𝑙; 

– (𝑌𝑙)̂
∗𝑆∪{𝑘} be the average prediction for the dataset for which variables’ 

𝑋𝑖: 𝑖 ∈ 𝑆 and variable’s 𝑋𝑘 values in the whole dataset are set to the 

values of object 𝑋𝑙; 

and the Shapley value: 

 𝑆𝐻𝐴𝑃𝑆 =
𝑠!∙(𝑚−𝑠−1)!

𝑚!
(𝑌𝑙̂

∗𝑆∪{𝑘}
 − 𝑌𝑙̂

∗𝑆
); (2) 

6. Summing all the 𝑆𝐻𝐴𝑃𝑆 values. 

The SHAP method was originally introduced by Štrumbelj and Kononenko 

(2010, 2014) and later popularized by Lundberg and Lee (2017). Its 

widespread application stems from a solid theoretical foundation and the 

reliability of its explanatory power. 

 



 

 

3. Factors determining wage disparities. Research based 

on data from the Local Data Bank for 2010 and 2023  

 

The analysis has been conducted on data describing the average 

compensation level in Polish powiats in the years 2010 and 2023. The data 

were acquired directly from the Local Data Bank (Pol. Bank Danych 

Lokalnych – BDL), which is Statistics Poland’s official repository, through 

webservices and contained variables which describe economic (labor market), 

sociological, demographical, infrastructural and environmental phenomena. 

The description of dependent and exogenous variables along with BDL 

identifiers is presented in the Table. 

 

Table. Description of variables used in the research   

Variable 
ID 

Internal Name Type of 
variable 

Description (English) 

64428 compensation_level Dependent 
variable 
(economic) 

Average gross monthly 
wages in PLN  

60530 regon_entities_ratio Labor market Business entities with 
registered REGON per 
10,000 population 

60270 unemployment_ratio Labor market Registered 
unemployment rate 
(overall)  

458700 social_care_ratio Sociological  Beneficiaries of social 
assistance by place of 
residence as the 
percentage of the total 
population  

60566 productive_populati
on_ratio 

Demographical  The percentage share 
of the working-age 
population in the total 
population 

450551 birthrate Demographical  Natural increase (births 
minus deaths) per 1,000 
population 

450543 marriages_ratio Demographical Marriages per 1,000 
population 

60300 hotels_beds_ratio Touristic Bed places per 1,000 
population 



 

 

395404 routes_ratio Infrastructural  Gmina (Polish 
equivalent to 
municipality) and powiat 
hard surface roads in 
km per 10,000 
population 

1646059 forests_ratio Environmental  Municipal forest area in 
m2 per capita 

Source: Local Data Bank (https://bdl.stat.gov.pl). 
 

To find the most influenced factors for  wages level modelling, we have built 

the eXtreme Gradient Boosting (Chen & Guestrin, 2016) model based on 319 

objects describing powiats. The distinct models have been built for both 

studied years. 

The python code implementing this procedure is included in Appendix 1. 

The full text results are presented in Appendix 2. The partial dependency plots 

presented in Figures 1 and 2 demonstrate that both models’ convergence is 

stable. 

 

Figure 1. Partial dependency plots for explanatory variables for wage levels in 
powiats in the 2010 model 

 
Source: authors’ calculations (code presented in Appendix 1). 
 
Figure 2. Partial dependency plots for explanatory variables for wage levels in powiats 
in the 2023 model 

 
 

https://bdl.stat.gov.pl/


 

 

 
Source: authors’ calculations (code presented in Appendix 1). 
 

The model shows solid learning on training data (R² = 0.626). The test 

performance is positive and reasonable (R² = 0.290), indicating it captures 

useful predictive relationships. The gap between 0.626 and 0.290 suggests 

some degree of overfitting, but not severe, which is typical and acceptable for 

many socioeconomic datasets. The model generalizes moderately well and is 

reliable enough to proceed with interpretation (VIP, SHAP). 

The VIP method is used to evaluate the influence of explanatory variables 

on the explained phenomena (wage level in powiats). The results for the 

models for 2010 and 2023 are presented in Figures 3 and 4. 

 

Figure 3. Variable importance plot for exogenous variables for wage levels in powiats 
in 2010 
 



 

 

Source: authors’ calculations (code presented in Appendix 2). 
 
Figure 4. Variable importance plot for exogenous variables for wage levels in powiats 
in 2023 

 
Source: authors’ calculations (code presented in Appendix 1). 
 

The VIP results for 2010 indicate that the most influential variable is the 

social_care_ratio, with the highest dropout  loss equal to 320.23. Thich means 

that removing this variable causes the strongest deterioration in model 

performance, suggesting that the social-assistance burden was a key structural 

determinant of compensation levels in 2010. The next highly influential 

variables are the routes_ratio (313.80) and productive_population_ratio 



 

 

(298.16), both of which significantly worsen prediction when excluded, 

showing that transportation accessibility and the working-age population share 

are critical factors. 

Further in the ranking, variables such as the unemployment_ratio (287.92), 

regon_entities_ratio (261.50), and forests_ratio (260.09) still contribute 

substantially to model accuracy, but their influence is more moderate. Their 

dropout losses imply that labor-market structure, business density, and 

environmental context affect compensation prediction, but to a lesser degree 

than factors related to social services and transport. These mid-ranked 

variables form a secondary explanatory layer that stabilizes the model. 

At the lower end of the importance distribution, the predictors with the 

smallest dropout losses, namely the marriages_ratio (259.70), birthrate 

(254.86), and the hotels_beds_ratio (254.13) exerted the least influence in 

2010. Removing them increases error only slightly, suggesting they contain 

comparatively limited independent information for determining compensation 

differences. In this year, demographic and tourism indicators appear marginal 

relative to the socioeconomic structure and accessibility. 

The VIP analysis of the 2023 wage prediction model for Polish powiats 

highlights the relative strength of diverse structural, demographic, and 

environmental determinants. 

In 2023, the variable importance structure shifts noticeably, with the 

social_care_ratio again emerging as the most influential predictor. This time, 

it shows an even higher dropout loss of 676.01, making it the dominant factor 

in the model. The next influential variables are the regon_entities_ratio 

(654.33) and routes_ratio (642.31), both showing large performance drops 

when removed. This highlights the growing importance of business density 

and transportation infrastructure for explaining compensation levels in 2023. 



 

 

The middle tier of variables, including the hotels_beds_ratio (591.84), 

forests_ratio (587.60), and productive_population_ratio (580.12) also carry 

substantial explanatory weight. Their dropout losses show that tourism 

capacity, environmental features, and demographic composition meaningfully 

support model predictions. Compared to 2010, these secondary predictors 

become more informative, suggesting a more complex structure of the 

determinants. 

The least influential predictors are the unemployment_ratio (579.92), 

marriages_ratio (569.89), and birthrate (563.92), whose dropout losses are 

closer to the full model but still in the lower range of importance. Although 

still impactful, the demographic and labor-market indicators exert smaller 

marginal effects compared with structural and institutional features. The 2023 

importance pattern therefore portrays a landscape where social-service load, 

enterprise density, and infrastructure dominate compensation prediction, while 

demographic variables play a supportive yet reduced role. 

The explanatory model analysis method allows a deeper insight into factors 

determining the analyzed phenomenon (compensation level). The analysis 

covers not only general model explanation but also most influential factors in 

individual cases. 

To better understand the influence of the given phenomena on overall 

compensation differences at local level, a SHAP analysis is conducted. The 

SHAP values for the 2010 and 2023 models for the Jelenia Góra powiat are 

presented in Figures 5 and 6. 

 

Figure 5. SHAP plot for exogenous variables for wage levels in the Jelenia Góra 
powiat in 2010 

 



 

 

 
Source: authors’ calculations (code presented in Appendix 1). 
 
Figure 6. SHAP plot for exogenous variables for the wage levels in the Jelenia Góra 
powiat in 2023 

 

 
Source: authors’ calculations (code presented in Appendix 2). 
 

For the Jelenia Góra powiat, in 2010, the strongest SHAP contributor was 

the routes_ratio, with a positive effect of 107.27 at a value of 24.40. This 

highlights the powiat’s relative transport accessibility as a major factor 

supporting its compensation prediction. The next significant variables are the 



 

 

unemployment_ratio (+26.64 at 10.90) and social_care_ratio (+19.70 at 5.90), 

indicating that despite relatively high unemployment and social-care 

indicators, these conditions still contribute positively within the model 

structure. 

Negative contributions also proved to play an essential role. The 

productive_population_ratio (–14.27 at 64.70) pulls the prediction downward, 

suggesting demographic or economic strain associated with the powiat’s 

working-age population share. The forests_ratio (–2.41), hotels_beds_ratio (–

1.59), and marriages_ratio (–0.34) also reduce the prediction slightly, 

implying that environmental and tourism indicators contribute less positively 

for Jelenia Góra compared to other powiats. 

A few variables exert small positive influences. The regon_entities_ratio 

(+9.17 at 1,499) and birthrate (+4.71 at –3.83) add a marginal upward pressure 

on salaries. The overall SHAP structure for 2010 reflects a mix of strong 

transport infrastructure effects and modest socioeconomic constraints, with 

demographic features moderating the powiat’s predicted compensation level. 

For Jelenia Góra in 2023, the regon_entities_ratio became the strongest 

positive contributor, with a SHAP value of +168.11 at 1,815 entities. This 

signals the increasing importance of local business density for salary levels. 

The productive_population_ratio (+86.10 at 54.90) and routes_ratio (+73.08 

at 27.90) also strongly elevate the prediction, with transportation accessibility 

remaining a key structural advantage. 

Additional positive contributions derive from the unemployment_ratio 

(+40.13 at 3.90) and hotels_beds_ratio (+9.11 at 35.70), indicating that 

tourism infrastructure played a more supportive role in 2023 than in 2010. 

Meanwhile, the social_care_ratio shows a negative impact (–17.93), which 

suggests an increasing sensitivity of the model to social-assistance burdens. 



 

 

The forests_ratio also contributes negatively (–7.52), moderating the positive 

effects of other variables. 

Smaller contributions come from birthrate (+5.07) and the marriages_ratio 

(+0.24), which have a limited influence. Overall, the SHAP profile for 2023 

indicates that Jelenia Góra’s salary structure is shaped by a combination of 

economic density, demographic composition, and improved labor-market 

indicators, with structural accessibility continuing to reinforce compensation 

predictions. 

For Jelenia Góra, the SHAP comparison between 2010 and 2023 shows a 

clear shift in the structure of factors influencing compensation levels. In 2010, 

the main positive driver was the routes_ratio (+107.27 at 24.40), supported by 

the unemployment_ratio (+26.64) and social_care_ratio (+19.70), while the 

the productive_population_ratio (–14.27) exerted a negative influence and the 

remaining variables had only small effects. In 2023, however, the leading 

factor becomes the regon_entities_ratio (+168.11 at 1815), accompanied by 

strong positive contributions from the productive_population_ratio (+86.10) 

and routes_ratio (+73.08). This indicates a transition from an ‘infrastructure-

driven’ model to a more ‘economic-demographic’ one. The role of the 

social_care_ratio also changes, from a small positive effect in 2010 (+19.70) 

to a clearly negative effect in 2023 (–17.93), suggesting the model became 

more sensitive to social-assistance burdens. 

Jelenia Góra is a representative of medium-sized powiats. To broaden the 

analysis, the SHAP values have been estimated for a representative of larger 

powiats, like the Wrocław powiat with results presented in Figures 7 and 8. 

 

Figure 7. SHAP plot for exogenous variables for wage levels in the Wrocław powiat 
in 2010 

 



 

 

 
Source: authors’ calculations (code presented in Appendix 1). 
 
Figure 8. SHAP plot for exogenous variables for the wage levels in the Wrocław 
powiat in 2023 

 

 
Source: authors’ calculations (code presented in Appendix 1). 
 

In the Wrocław powiat (2010), the SHAP analysis highlights the 

social_care_ratio as the dominant positive driver, contributing 300.38 units to 

the prediction at a value of 2.50. This indicates that Wrocław’s low social-care 

burden is interpreted by the model as strongly favorable for compensation 

levels. Similarly, the routes_ratio (SHAP = 213.06, value = 12.20) exerts a 



 

 

substantial positive impact, reflecting Wrocław’s well-developed transport 

networks. 

Another strong contributor is the unemployment_ratio, adding 124.48 units 

at a relatively low level of 5.50, suggesting that lower unemployment aligns 

with higher predicted salaries. The marriages_ratio also shows a smaller but 

positive impact (+14.44), hinting at demographic vitality. In contrast, the 

regon_entities_ratio (SHAP = –10.31 at 1,608 entities) slightly reduces the 

prediction, which may reflect saturation or diminishing marginal returns in 

areas with very high business density. 

Most remaining variables contribute modestly. Birthrate (+5.58), the 

hotels_beds_ratio (+2.79), and forests_ratio (+0.74) collectively reinforce the 

positive prediction but with relatively small effects. Their limited magnitude 

suggests that Wrocław’s compensation structure in 2010 was driven far more 

by social infrastructure, transportation connectivity, and labor-market 

conditions than by tourism capacity or environmental features. 

In 2023, the Wrocław powiat showed significantly larger SHAP magnitudes 

than in 2010. The strongest contributor was still the social_care_ratio, this 

time with an even more extreme value of +577.18 at a feature value of 1.10, 

reinforcing the model’s interpretation of a low social-care burden as a strong 

positive salary determinant. The routes_ratio follows with 458.16 at 14.20, 

highlighting substantial benefits from transport connectivity. 

A major upward contribution also comes from the regon_entities_ratio, 

adding 440.86 at a high value of 2,205, implying that in 2023, business density 

exerted a far stronger positive effect than in 2010. The unemployment_ratio 

(+112.97) and marriages_ratio (+104.92) further elevated the compensation 

prediction, linking favorable labor-market and demographic conditions to 

higher wages. 



 

 

Lesser yet notable effects included the hotels_beds_ratio (+72.29), birthrate 

(+12.15), and a small negative influence from the forests_ratio (–7.05). The 

productive_population_ratio contributed only +1.92, indicating minimal 

effect. Overall, the SHAP profile revealed that in 2023, Wrocław’s 

compensation structure was strongly shaped by socioeconomic advantage, 

business density, and infrastructure, with demographic indicators reinforcing 

but not dominating the signal. 

For Wrocław, the comparison of 2010 and 2023 reveals an increase in the 

strength of the main predictive factors and a shift in the importance of several 

of them. In 2010, the model was dominated by the social_care_ratio (+300.38 

at 2.50) and routes_ratio (+213.06), with a notable but smaller effect from the 

unemployment_ratio (+124.48), while the regon_entities_ratio was even 

slightly negative (–10.31). In 2023, all major 2010 factors remained influential: 

the social_care_ratio (+577.18), routes_ratio (+458.16), and especially the 

regon_entities_ratio (+440.86 at 2205), indicating that business density  

became a key advantage for the city. At the same time, the marriages_ratio 

(+104.92) and hotels_beds_ratio (+72.29) gained significantly more 

importance than in 2010, while the effect of the productive_population_ratio 

decreased and became nearly neutral (+1.92). This shows that in 2023, 

compensation levels in Wrocław were primarily shaped by a combination of 

institutional-infrastructural strengths and high economic activity. 

 

4. Conclusions 

 

The results demonstrate that machine learning, when combined with 

interpretability methods, can capture the complexity of regional wage 

disparities beyond the scope of traditional econometric approaches. While 

labor market and demographic indicators consistently emerge as the strongest 



 

 

determinants, their relative importance evolves in response to broader socio-

economic changes. The observed shifts between 2010 and 2023 underline the 

dynamic nature of regional wages formation, where structural conditions such 

as productive population ratios and enterprise density interact with local 

demographic and infrastructural contexts in non-linear ways. 

Importantly, a SHAP-based analysis allows for a nuanced understanding of 

these dynamics by revealing how the same variable can contribute differently 

across powiats and time periods. This local interpretability enhances the 

practical value of predictive modeling for policymakers, offering insights that 

extend beyond aggregate associations. The findings suggest that data-driven 

approaches, when complemented with robust explanatory tools, provide not 

only accurate predictions but also meaningful guidance for regional 

development strategies aimed at mitigating wage inequalities. 
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Appendix 1. 

 

The code used in the research study is presented below. The data were acquired 

directly from BDL through the webservices. To repeat the analysis for years 

other than 2010 and 2023 (assuming that data are available in the repository 

for the chosen years), the only line that requires change is ‘for YEAR in 

[2010,2023]:’.  

 

import requests 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import shap 
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import dalex as dx 

 

from sklearn.model_selection import train_test_split, 

RepeatedKFold, cross_validate 

from sklearn.preprocessing import StandardScaler 

# from sklearn.neural_network import MLPRegressor 

from sklearn.inspection import PartialDependenceDisplay 

from sklearn.metrics import r2_score, mean_squared_error 

from xgboost import XGBRegressor 

 

base_url = "https://bdl.stat.gov.pl/api/v1/data/by-

variable/" 

params = { 

 'format': 'jsonapi', 

 'unit-level': 5, 

 'page-size': 100, 

} 

 

def get_data_by_variable(variable_id, variable_name, 

year): 

 ids = [] 

 values = [] 

 

 for page in range(4): 

 params['page'] = page 

 params['year'] = year 

 response = requests.get(f"{base_url}{variable_id}", 

params=params) 

 data = response.json() 

 

 for item in data['data']: 

 attributes = item['attributes'] 

 id_ = item['id'] 

 val_data = attributes['values'] 

 

 if val_data: 

 val = val_data[0]['val'] 

 ids.append(id_) 

 values.append(val) 

 

 return pd.DataFrame({variable_name: values}, index=ids) 

 

 

for YEAR in [2010, 2023]: 

 df_vars = { 

 64428: 'compensation_level', 

 60530: 'regon_entities_ratio', 



 

 

 458700: 'social_care_ratio', 

 395404: 'routes_ratio', 

 60270: 'unemployment_ratio', 

 60566: 'productive_population_ratio', 

 450551: "birthrate", 

 1646059: "forests_ratio", 

 60300: "hotels_beds_ratio", 

 450543: "marriages_ratio" 

 } 

 

 df = None 

 for key, val in df_vars.items(): 

 df_current = get_data_by_variable(key, val, YEAR) 

 if df is None: 

 df = df_current 

 else: 

 df = df.join(df_current) 

 

 # Basic dataset summary 

 X = df.drop(columns=['compensation_level']) 

 y = df['compensation_level'] 

 n_obs, n_features = X.shape 

 print(f"\n=== YEAR {YEAR} ===") 

 print(f"Number of observations: {n_obs}") 

 print(f"Number of predictors: {n_features}") 

 print(f"Observation-to-predictor ratio: {n_obs / 

n_features:.2f}") 

 

 # Train–test split BEFORE scaling to avoid leakage 

 X_train, X_test, y_train, y_test = train_test_split( 

 X, y, test_size=0.05, random_state=42 

 ) 

 

 xgb = XGBRegressor( 

 n_estimators=200, 

 learning_rate=0.01, 

 max_depth=3, 

 subsample=0.8, 

 colsample_bytree=0.8, 

 reg_lambda=1.0, 

 random_state=42, 

 objective="reg:squarederror" 

 ) 

 

 cv = RepeatedKFold(n_splits=5, n_repeats=5, 

random_state=42) 

 cv_results = cross_validate( 



 

 

 xgb, 

 X_train, 

 y_train, 

 cv=cv, 

 scoring=['r2', 'neg_root_mean_squared_error'], 

 return_train_score=True 

 ) 

 

 print(f"CV mean test R²: 

{np.mean(cv_results['test_r2']):.3f}") 

 print(f"CV mean test RMSE: {-

np.mean(cv_results['test_neg_root_mean_squared_error']):

.3f}") 

 

 xgb.fit(X_train, y_train) 

 y_pred_train = xgb.predict(X_train) 

 y_pred_test = xgb.predict(X_test) 

 train_r2 = r2_score(y_train, y_pred_train) 

 test_r2 = r2_score(y_test, y_pred_test) 

 train_rmse = mean_squared_error(y_train, 

y_pred_train)**.5 

 test_rmse = mean_squared_error(y_test, y_pred_test)**.5 

 

 print(f"Train R²: {train_r2:.3f}, RMSE: 

{train_rmse:.3f}") 

 print(f"Test R²: {test_r2:.3f}, RMSE: {test_rmse:.3f}") 

 

 model_explainer = dx.Explainer(xgb, X, y, 

label=f"XGB_{YEAR}") 

 vi = model_explainer.model_parts(N=10000, 

random_state=42) 

 print(vi.result) 

 fig_vi = vi.plot(show=False, title=f"XGB VIP explainer 

for compensation level in year {YEAR}") 

 fig_vi.write_image(f"vip_plot_{YEAR}.png") 

 # SHAP analysis 

 explainer = shap.Explainer(xgb.predict, X, 

feature_names=X.columns) 

 shap_values = explainer(X) 

 

 # Jelenia Góra 

 index_jg = df.index.get_loc("030210161000") 

 shap_df_jg = pd.DataFrame({ 

 'Feature': X.columns, 

 'SHAP Value': shap_values[index_jg].values, 

 'Feature Value': shap_values[index_jg].data 

 }) 



 

 

 print("SHAP values for county Jelenia Góra 

(030210161000):") 

 print(shap_df_jg.sort_values(by='SHAP Value', key=abs, 

ascending=False).head(10)) 

 

 plt.figure(figsize=(18, 6)) 

 plt.suptitle(f"Compensation Level Model SHAP values for 

Jelenia Góra for year {YEAR}") 

 shap.plots.bar(shap_values[index_jg], max_display=10, 

show=False, show_data=True) 

 plt.tight_layout(pad=1.0) 

 plt.savefig(f"Jelenia_shap_{YEAR}.jpg") 

 plt.show() 

 

 # Wrocław 

 index_wr = df.index.get_loc("030210564000") 

 shap_df_wr = pd.DataFrame({ 

 'Feature': X.columns, 

 'SHAP Value': shap_values[index_wr].values, 

 'Feature Value': shap_values[index_wr].data 

 }) 

 print("SHAP values for county Wrocław (030210564000):") 

 print(shap_df_wr.sort_values(by='SHAP Value', key=abs, 

ascending=False).head(10)) 

 

 plt.figure(figsize=(12, 6)) 

 shap.plots.bar(shap_values[index_wr], max_display=10, 

show=False, show_data=True) 

 plt.suptitle(f"Compensation Level Model SHAP values for 

Wrocław for year {YEAR}") 

 plt.tight_layout(pad=1) 

 plt.savefig(f"Wroclaw_shap_{YEAR}.jpg") 

 plt.show() 

 

 # PDP plots (using scaled data from final model) 

 fig, ax = plt.subplots(figsize=(12, 8)) 

 PartialDependenceDisplay.from_estimator( 

 xgb, 

 X, 

 features=list(range(X.shape[1])), 

 feature_names=X.columns, 

 ax=ax 

 ) 

 plt.suptitle(f"Partial dependency plots for compensation 

level model for year {YEAR}") 

 plt.tight_layout() 

 plt.savefig(f"PDP_{YEAR}.jpg") 



 

 

 plt.show() 

 

Appendix 2. 

 

The full results obtained after the execution of the code presented in Appendix 

1 are as follows: 

 

=== YEAR 2010 === 

Number of observations: 379 

Number of predictors: 9 

Observation-to-predictor ratio: 42.11 

CV mean test R²: 0.299 

CV mean test RMSE: 340.347 

Train R²: 0.629, RMSE: 254.324 

Test R²: 0.369, RMSE: 192.135 

Preparation of a new explainer is initiated 

 

 -> data : 379 rows 9 cols 

 -> target variable : Parameter 'y' was a pandas.Series. Converted to 

a numpy.ndarray. 

 -> target variable : 379 values 

 -> model_class : xgboost.sklearn.XGBRegressor (default) 

 -> label : XGB_2010 

 -> predict function : <function yhat_default at 0x000002C41C6A75B0> 

will be used (default) 

 -> predict function : Accepts pandas.DataFrame and numpy.ndarray. 

 -> predicted values : min = 2.72e+03, mean = 2.89e+03, max = 4.11e+03 

 -> model type : regression will be used (default) 

 -> residual function : difference between y and yhat (default) 

 -> residuals : min = -6.88e+02, mean = 5.32, max = 1.9e+03 

 -> model_info : package xgboost 

 

A new explainer has been created! 

 variable dropout_loss label 

0 _full_model_ 251.572326 XGB_2010 

1 hotels_beds_ratio 254.133193 XGB_2010 

2 birthrate 254.864096 XGB_2010 

3 marriages_ratio 259.696907 XGB_2010 

4 forests_ratio 260.088788 XGB_2010 

5 regon_entities_ratio 261.499846 XGB_2010 

6 unemployment_ratio 287.919198 XGB_2010 

7 productive_population_ratio 298.164109 XGB_2010 

8 routes_ratio 313.799260 XGB_2010 

9 social_care_ratio 320.226454 XGB_2010 

10 _baseline_ 468.653795 XGB_2010 

ExactExplainer explainer: 380it [00:52, 7.25it/s]  

SHAP values for county Jelenia Góra (030210161000): 

 Feature SHAP Value Feature Value 

2 routes_ratio 107.268913 24.40 

3 unemployment_ratio 26.644887 10.90 

1 social_care_ratio 19.697117 5.90 



 

 

4 productive_population_ratio -14.265568 64.70 

0 regon_entities_ratio 9.167773 1499.00 

5 birthrate 4.711150 -3.83 

6 forests_ratio -2.413097 52.90 

7 hotels_beds_ratio -1.588051 22.24 

8 marriages_ratio -0.335435 5.40 

SHAP values for county Wrocław (030210564000): 

 Feature SHAP Value Feature Value 

1 social_care_ratio 300.382093 2.50 

2 routes_ratio 213.063043 12.20 

3 unemployment_ratio 124.481779 5.50 

4 productive_population_ratio -16.713112 65.80 

8 marriages_ratio 14.444688 5.60 

0 regon_entities_ratio -10.308929 1608.00 

5 birthrate 5.582377 0.25 

7 hotels_beds_ratio 2.794502 13.95 

6 forests_ratio 0.744744 13.80 

 

=== YEAR 2023 === 

Number of observations: 380 

Number of predictors: 9 

Observation-to-predictor ratio: 42.22 

CV mean test R²: 0.251 

CV mean test RMSE: 718.596 

Train R²: 0.564, RMSE: 562.235 

Test R²: -0.034, RMSE: 527.064 

Preparation of a new explainer is initiated 

 

 -> data : 380 rows 9 cols 

 -> target variable : Parameter 'y' was a pandas.Series. Converted to 

a numpy.ndarray. 

 -> target variable : 380 values 

 -> model_class : xgboost.sklearn.XGBRegressor (default) 

 -> label : XGB_2023 

 -> predict function : <function yhat_default at 0x000002C41C6A75B0> 

will be used (default) 

 -> predict function : Accepts pandas.DataFrame and numpy.ndarray. 

 -> predicted values : min = 4.5e+03, mean = 6.56e+03, max = 9.46e+03 

 -> model type : regression will be used (default) 

 -> residual function : difference between y and yhat (default) 

 -> residuals : min = -4.5e+03, mean = 2.39, max = 3.35e+03 

 -> model_info : package xgboost 

 

A new explainer has been created! 

 variable dropout_loss label 

0 _full_model_ 560.529352 XGB_2023 

1 birthrate 563.920908 XGB_2023 

2 marriages_ratio 569.890669 XGB_2023 

3 unemployment_ratio 579.918983 XGB_2023 

4 productive_population_ratio 580.117875 XGB_2023 

5 forests_ratio 587.603146 XGB_2023 

6 hotels_beds_ratio 591.842447 XGB_2023 

7 routes_ratio 642.313577 XGB_2023 

8 regon_entities_ratio 654.331861 XGB_2023 

9 social_care_ratio 676.012299 XGB_2023 

10 _baseline_ 935.037314 XGB_2023 

ExactExplainer explainer: 381it [00:34, 8.13it/s]  



 

 

SHAP values for county Jelenia Góra (030210161000): 

 Feature SHAP Value Feature Value 

0 regon_entities_ratio 168.111842 1815.00 

4 productive_population_ratio 86.101887 54.90 

2 routes_ratio 73.077743 27.90 

3 unemployment_ratio 40.129574 3.90 

1 social_care_ratio -17.931182 2.70 

7 hotels_beds_ratio 9.112820 35.70 

6 forests_ratio -7.528812 59.10 

5 birthrate 5.067187 -8.75 

8 marriages_ratio 0.236881 3.70 

SHAP values for county Wrocław (030210564000): 

 Feature SHAP Value Feature Value 

1 social_care_ratio 577.179101 1.10 

2 routes_ratio 458.159322 14.20 

0 regon_entities_ratio 440.862895 2205.00 

3 unemployment_ratio 112.970279 1.60 

8 marriages_ratio 104.923334 5.80 

7 hotels_beds_ratio 72.285200 21.63 

5 birthrate 12.149382 -1.77 

6 forests_ratio -7.046792 15.20 

4 productive_population_ratio 1.921097 60.804 

productive_population_ratio 3.846133 2.033800 

 


